Click www.researchjournal.co.in/online/subdetail.html to purchase.

DOI: 10.15740/HAS/AJES/11.1/111-117 ■ e ISSN-0976-8947 ■ Visit us : www.researchjournal.co.in

Climate change and rice (*Oryza sativa* L.) production **S.** ARUNVENKATESH, R. VINOTH KUMAR AND M. RAJASEKAR

Article Chronicle : *Received* : 01.02.2016; *Accepted* : 28.05.2016

<u>Key Words</u>: Climate change, Elevated CO_2 , Temperature

ABSTRACT : Agriculture is extremely vulnerable to climate change. High temperatures eventually reduce yields of desirable crops while encouraging weed and pest proliferation. The present CO₂ of 380 ppm, projected to double by the end of the century, could benefit the rice crop by increasing photosynthesis and biomass depending on rice cultivar, growth stage and environment (IPCC, 2007). The Inter Governmental Panel on Climate Change defined Climate change as a "change in the state of the climate that can be identified by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer". It refers to any change in climate over time, whether due to natural variability or as a result of human activity (IPCC, 2007). The present CO, of 380 ppm, projected to double by the end of the century, could benefit the rice crop by increasing photosynthesis and biomass depending on rice cultivar, growth stage and environment (IPCC, 2007). Although elevated CO_3 could enhance photosynthesis, especially in C_3 crop like rice, it is a potential component to trap the short Wave radiations from the earth surface only to be redirected back to increase the global surface mean temperature. Increased biomass production due to elevated CO₂ could potentially increase yield, provided microsporogenesis, flowering, and grain-filling are not disrupted by environmental stresses such as drought or high temperature. The adaptation strategies for changing climate are, Screening of CO₂ - responsiveness and temperature-tolerant varieties, Changing cultivation method, Site-specific adjustment in crop management (shifting planting dates and improved water management), Geographic analysis of vulnerable regions (where the rice crop is already experiencing critical temperature levels), Regional climate modelling to identify future "tilting points" of rice production (temperatures or CO, levels above which major yield losses are experienced)

HOW TO CITE THIS ARTICLE : Arunvenkatesh, S., Kumar, R. Vinoth and Rajasekar, M. (2016). Climate change and rice (*Oryza sativa* L.) production. *Asian J. Environ. Sci.*, **11**(1): 111-117, **DOI: 10.15740/HAS/ AJES/11.1/111-117.**

Author for correspondence :

S. ARUNVENKATESH Department of Agronomy, Tamil Nadu Agricultural University, COIMBATORE (T.N.) INDIA Email : venkatesarun@ gmail.com See end of the article for Coopted authors'